742

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. 7 JULY 1997

[LETTER

SEWD: A Cache Architecture to Speed up the
Misaligned Instruction Prefetch

Joon-Seo YIM', In-Cheol PARK', and Chong-Min KYUNG', Nonmembers

SUMMARY In microprocessors, reducing the cache access de-
lay and the number of pipeline stall is critical to improve the
system performance. In this paper, we propose a Separated
Word-line Decoding (SEWD) cache to overcome the pipeline
stall caused by the misaligned multi-words data or instruction
prefetches which are placed over two cache lines. SEWD cache
makes it possible to perform misaligned prefetch as well as
aligned prefetch in one clock cycle. This feature is invaluable
because the branch target addresses are very often misaligned
(Percentage of misalignment in the cache is 8 to 13% for 16-byte
caches). 8 Kbyte SEWD cache chip was implemented in 0.8 um
DLM CMOS process. It consists of 489,000 transistors on a die
size of 0.853 x 0.827 cm?.

key words: cache, microprocessor, pipeline

1. Introduction

The advancement of VLSI implementation technology
leads to high performance microprocessors that oper-
ate above 300 MHz with more than three million tran-
sistors on a single chip. The performance of cache
which occupies up to 40% of whole chip area has be-
come a bottleneck in the state-of-the-art microproces-
sors. Hence, many researches are now focusing on the
performance enhancement of cache in microprocessors.
In the architecture level, the optimal cache size, the re-
placement algorithm and cache miss handling schemes
have been studied for a long time[1],[2]. Various tech-
niques were investigated to speed up the data transfer
between cache and processor[3]. To this end, such
performance-improving techniques as write buffering,
reordering, and line buffering are practically employed
to minimize the pipeline stall in the microprocessors [4].
In the circuit level, techniques such as pipelined decod-
ing[5], wave-pipelining[6], and self-timing[7] are ac-
tively being studied.

Most of the above researches are focused on mini-
mizing the cache access delay regardless of architectures
and memory access patterns of microprocessors. In any
microprocessor adopting the cache architectures devel-
oped so far, the pipeline should stall at least two clock
cycles until the required full words data are available if
the operands are placed over two cache lines. Therefore,
a new cache architecture which can effectively handle

Manuscript received March 12, 1997.

tThe authors are with the Department of Electrical En-
gineering, Korea Advanced Institute of Science and Tech-
nology 373-1 Kusong-dong, Yusong-gu, Taejon 305-701
Korea.

such a misaligned data access is required to enhance the
microprocessor performance by removing the pipeline
stalls.

For an example shown in Fig. 1, the misaligned
data access needs two extra two cycle penalties. In the
first clock cycle, lower line (line[i]) is read out from
cache and saved in a read buffer temporally. Upper
line (line[i + 1]) is read out in the second cycle. Then,
the lower word of read buffer is aligned with the up-
per word using a load aligner which is shown in Fig. 2.
During these two extra cycles, the pipeline is stalled,
which is called a cache line boundary problem due to
the address misalignment.

In superscalar microprocessors, the bandwidth of
instruction prefetch should be large in order that there
is no shortage of instructions to execute in multiple
pipes. If the cache access is aligned in one line, the
number of instruction prefetched at a time is the same

Example: address=14 size=4 byte

:lByu
I A

[]
13|I2|||‘10|9|8I‘l]ﬁlsllliﬂlz
@

line[l+1]
1| 0] linefi]

Decoder Data RAM

2nd Cycle,
1st Cycle

line[i+1]

SIS VS LTS LS 1AL AL LIS LY L LS LIS LA 2 IS o (TS LISLL LSS e
e T T T T tine)

1st Cycle

[T 777727777777

2nd Cycle

Read Buffer

1 3rd Cycle I—'\T* Ex‘ejcllJ‘ilon
n|

AY

Load Allgne\l ' l 1 l

(b)

Fig. 1 (a) Misaligned data across the two cache lines and (b)
its handling needs extra cycle penalties.

rYrreom e
o o o del o To ol a
o ool o [ol ol g™
o OMTololoelelaloe™
—ﬁ>°___ji+ O[O [0 [[[O ::
(o [o [o [[[0 [T Ij%»[it
" o> :_@a» O [e 'j@r ,ﬁr_j@» [i
jb j@r '—iljw j@r O [o] i u;Jr 7—@1&
o [o[o[o '—I—ILJ‘H o [o [o :::

Fig. 2 One byte cell of load aligner: 4bit shifting case.

LETTER

as the cache line size. In CISC microprocessors, espe-
cially in VAX or x86, instruction length varies from
1 byte to 15 bytes [8]. Therefore, the branch target posi-
tions can randomly placed anywhere within the cache
line. Moreover, the frequency of branch instruction is
so high, one per four or five instructions[8], that the
branch target address is very often misaligned. To min-
imize the address misalignment penalty, the high level
compilers often fill NOP (No Operation) instructions
into an original program to align the target branch to
the cache line boundary. According to the benchmark
reports, the aligned program improves the performance
by 30% over the misaligned program [9].

In this paper, we propose a “Separated Word-line
Decoding (SEWD)” architecture which can access the
misaligned branch target instruction or the misaligned
data in one cycle as well as aligned instruction/data.
Moreover, SEWD architecture improves the cache hit
detection timing which is a critical path in cache cir-
cuits.

This paper is organized as follows. Section 2 de-
scribes the SEWD architecture. Section 3 shows the chip
implementation. The trace-driven simulation result for
the address misalignment is shown in Sect. 4.

2. SEWD Architecture

To access the two adjacent cache lines simultaneously,
we need a modification in the data RAM architecture as
shown in Fig.3. RAM array is divided into two planes
and the decoder is positioned between the two RAM
planes. This bipartition of the RAM plane is also help-
ful for reducing the word line access time.

Two adjacent cache lines are not generally in suc-
cessive position in the main memory. To handle the mis-

Data RAM

line[i

Single Cycle
] 1 l—bvv Execution
\ Unit
Load Aligner AY

Fig. 3 Modification of architecture to access the adjacent two
cache lines simultaneously.

31 1110 43 0
Tag l Line Index !Byte
Tag Data
DW | DW DW | DW

Tagf{i+1)|
agli]

Left Right

L. |

(@
Fig. 4

azm]ﬁhgmﬁ | Lineli}

743

alignment in a single cycle, therefore, we should know
whether the two adjacent cache lines have the same tag
address or not. That is, we read tag[i] and tag[i + 1} and
compare them with physical address simultaneously to
give hit[:] and hit[i + 1]. To make this possible, the
adjacent tag RAM lines should also be accessed simul-
taneously. But this is impossible in a traditional tag
RAM architecture shown in Fig. 4 (a).

To resolve the problem, we divide tag RAM into
even and odd parts as shown in Fig.4(b). The LSB
of line index in the address (odd/even bit in Fig. 4 (b))
determines whether the even or odd array is accessed in
the SEWD architecture shown in Fig.4(b). The result
of simultaneous tag read can be one of three cases: com-
plete hit (both line[:] and line[i + 1] are hits), partial
hit (one of them is hit), and complete miss (both are
misses). For the case of complete hit, the two adjacent
cache lines can be accessed in one cycle. Otherwise,
cache miss handling process is started. If line[d] is hit
and line[t + 1] is miss, the line[i] is forwarded to the
execution unit during the cache miss handling for the
line[t + 1]. If the line[d] is miss, the pipeline has to be
stalled waiting for the line[i]. As the cache hit ratio is
usually over 98% [8], most of the misaligned instruc-
tion/data can be accessed in one cycle.

In a traditional architecture, the decoder circuits
are the same for the left and right plane as shown in
Fig. 4 (a), which means that the two adjacent word-lines
can not be driven simultaneously. We modified the de-
coder circuit to make the adjacent cache lines be ac-
cessed concurrently. For a misaligned address, line[i] in
the left plane and line[+ 1] in the right plane are acti-
vated. Otherwise, line[i] is driven both for the left and
right plane. That is, in the left plane, line[i] is selected
regardless of misalignment or not, but in the right plane,
linel[i] is selected for the aligned case and line[i + 1] for
the misaligned case. To make this mechanism possi-
ble, the left plane uses a normal decoder as shown in
Fig. 5 (a), while the right plane uses a SEWD decoder as
shown in Fig.5(b). If an address is not aligned, side
signal is activated to drive line[i + 1], otherwise self
signal is activated to drive line[i] in a SEWD decoder.
SEWD decoder is also used for the odd part array of
tag RAM.

31 11 10 543 0
r II.,Inelndext)“:le Byte

Data
DwW | DW

DW | DW

Even Tag Odd Tag

Line[i+1)

Left Right
1 |

(b)

(a) Traditional architecture and (b) SEWD architecture.

744
self side
}
line[i+1] []} OQ—G; ‘Iil ‘|j
line[i] D— [_:]_‘ :’q_‘G_l ﬁ _‘j
Word Line I:L]_ % ﬁ —t]
Bit Line @ o)
Fig. 5 (a) Normal decoder at left plane and (b) SEWD decoder

at right plane.

[ore-gdecodar | <. Physical

*14 Line Index — 7 | 32 Address
14
r21
Tag
g Tag | | Tag 3
& E Even | §| Odd g
z 3
8 &
2
Data Left g Data Right
g
£ [Tcmp [
3
E hiteven hitodd
Read/Write/Precharge Cache Controller
Read Buffer
Fill Buffer Self Timer [System Clock
Load Aligner j«— Global Command

Fig. 6 Block diagram of SEWD cache.

3. Test Chip Design

We have designed a 4-way set-associative 8 kbyte on-
chip cache to verify the proposed SEWD architecture.
As shown in Fig. 6, the fabricated test chip includes
data RAM which consists of 128 lines, where each line
consists of 16 bytes. Among the 32-bit physical address,
upper 21 bits are used for the tag, middle 7 bits are for
the line index, and lower 4 bits select the byte. Pseudo
LRU (Least Recently Used) algorithm[8] is used for
the cache line replacement scheme. Cache controller
supports SEWD cache miss handling.

Tag array is broken into two parts to implement
SEWD architecture, therefore, it needs extra read/write
circuits and comparators. For the test chip, the extra
area overhead due to the SEWD architecture is only
2.35% as shown in Table 1 (Data RAM area is the same
in both cases, as in conventional cache, the data RAM
area is bipartitioned to speed up the cache line access
anyway). Furthermore, as SEWD tag reduces the bit-
line length to half, the reduced bit-line capacitance im-
proves the hit detection time from 7.18 ns of conven-
tional architecture to 5.59 ns a saving by 22%, which is
another important benefit of the SEWD architecture.

In the test chip, to perform the complicated micro-
level operations within one clock cycle and to minimize
the power consumption, a self-timed circuit technique
was used such as a pulsed predecoder and a strobed
sense amplifier [7].

Figure 7 shows the photograph of the test chip,

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. 7 JULY 1997

Table 1 Area comparison between conventional and SEWD
architecture.
Block Conventioanl SEWD
Tag RAM 3.55mm? 4.11 mm?
DATA RAM 20.7664 mm? | 20.7763 mm?
Total 24.3164mm? | 24.8863 mm?
Ratio +2.35%

Fig. 7 Photograph of SEWD test chip.

precharge

predecoder driving for read predecader driving for write

{__main decoder driving for read main decoder drivigg for write

’ 3 bitling sensing RAM Cell Yrite

H d Data RAW Out

i cache hit i T
Q 280 357 5.23 6.72 7.71 821 9.05 12,63 14,83 15.96

Fig. 8 Various operation of the SEWD cache occurring during
one clock cycle.

which consists of 77,184 bit RAM cells based on 6 tran-
sistor SRAM cell having the size of 11.2um x 18.8 um.
The total number of transistors is 489,000 and the chip
area is 0.853 x 0.827 cm?. The chip was proven to work
correctly at 60 MHz with the timing budget shown in
Fig.8.

4. Trace Simulation

To see how often the memory addresses are misaligned,
the trace-driven simulation is applied for benchmark
programs|[10]. We also experimented with x86 appli-
cation such as Windows 3.1 on the x86 instruction set
simulator. The result is shown in Table 2 for 8 kbyte
cache size. For the line size of 16 bytes, which is very
usual in most microprocessors, 7.9% to 13.7% of accesses
were found as misaligned. It manifests the significance
of SEWD architecture in the instruction cache.

5. Conclusion

In this paper, we propose a separated word-line decod-

LETTER

Table 2 Percentage of the misaligned case for the instruction
prefetch for various benchmark programs.

Line Size 008 022 023 026 windows
(Bytes) €Spresso li eqntott | compress boot
8 20.318 | 19.906 | 18.697 | 28.382 17.399
16 9.582 | 10.903 | 12.469 13.732 7.928
32 4217 6.535 | 8525 7.331 3.787
64 2.334 3975 | 2.147 4.161 2.006

ing (SEWD) cache architecture to solve the cache line
boundary problem. It reduces the clock cycle penalty
due to the address misalignment access, which occurs
quite often (up to 20%) for the misaligned branch tar-
get instruction prefetch. According to our experiment
with trace-driven simulation, about 10% of instruction
prefetches are misaligned for the 16-byte cache line size.

In 0.8 pm DLM CMOS technology, the critical path
timing was reduced from 7.18 ns to 5.59 ns, at the area
overhead of only 2.3%, which is a side, yet important
benefit of the SEWD architecture since the cache nor-
mally forms the critical path in most high-performance
MicCroprocessors.

Acknowledgement

The authors are grateful to Hee-Choul Lee, Tae-Hoon
Kim, Bong-Il Park, Chang-Jae Park, who are involved
in the design of cache for the K486 microprocessor. This
work may be impossible without their endeavor.

References

[1] S.Przybylski, M. Horowitz, and J. Hennessy, *“Performance

745

tradeoffs in cache design,” Proc. 15th Int. Symp. on Com-
puter Arch., June 1988.

[2] A.J. Smith, “Cache memory,” Computing Surveys, vol.14,
no.3, pp.473-530, Sept. 1982.

{3] M. Motomura, T. Inoue, H. Yamada, and A. Konagaya,
“Cache-processor coupling: A fast and wide on-chip data
cache design,” IEEE J. Solid-State Circuits, vol.30, no.4,
pp-375-382, April 1995.

[4] 82395DX 386TM Smart Cache, Intel Corp., 1990, Order
Number 290382-001.

[5] Y. Unekawa, T. Kobayashi, T. Shirotori, Y. Fujimoto,
T. Shimazawa, K. Nogami, T. Nakao, K. Sawada, M.
Matsui, T. Sakurai, M.K. Tang, and W.A. Huffman, “A
110-MHz/1-Mb synchronous tag RAM,” IEEE J. Solid-
State Circuits, vol.29, no.4, pp.403-410, April 1994.

[6] K. Ishibashi, K. Komiyaji, H. Toyoshima, M. Minami,
N. Ohki, H. Ishida, T. Yamanaka, T. Nagano, and T.
Nishida, “A 300-MHz 4-Mb wave-pipeline CMOS SRAM
using a multiphase PLL,” 1EEE J. Solid-State Circuits,
vol.30, no.11, pp.1189-1195, Nov. 1995.

[7] A.L. Silburt, R.S. Phillips, G.F. Randall Gibson, S.W.
Wood, A.G. Bluschke, J.S. Fujimoto, S.P. Kornachuk,
B. Nadean-Dostie, R.K. Verma, and P.M. Diedrich, “A
180MHz 0.8 um BiCMOS modular memory family of
DRAM and multiport SRAM,” IEEE J. Solid-State Cir-
cuits, vol.28, no.3, pp.222-232, March 1993.

[8] J.L. Hennessy and D.A. Patterson, “Computer Architec-
ture: A Quantitative Approach,” Morgan Kaufmann Pub-
lishers, 1990.

[9] T.R. Halfhill, “Intel launches rocket in a socket,” Byte,
pp.92-108, May 1993.
[10] “SPEC Integer Benchmark Suite: CINT92,” 1992.

